Reference API
Documentation for Multispati.jl's public interface.
Index
Multispati.AbstractMultispatiMultispati.MULTISPATIMultispati.SpatialPCABase.sizeLinearAlgebra.eigvalsLinearAlgebra.eigvecsMultispati.moransIboundsMultispati.varianceMoransIdecompositionMultivariateStats.projectionMultivariateStats.reconstructMultivariateStats.reconstructStatistics.meanStatsAPI.fitStatsAPI.fitStatsAPI.predictStatsAPI.predict
API
Multispati
Multispati.AbstractMultispati — TypeAbstractMultispatiMultispati.MULTISPATI — TypeMULTISPATI <: AbstractMultispatiStatsAPI.fit — Methodfit(MULTISPATI, X, W, Q=I, D=I / size(X, 2); ...)Perform MULTISPATI over the data given a matrix X. Each column of X is an observation. W is a connectivity matrix where $w_{ij}$ is the connection from j -> i. Q is a symmetric matrix of size n (or LinearAlgebra.UniformScaling(@ref)) and D a symmetric matrix of size d (or LinearAlgebra.UniformScaling(@ref))
Keyword arguments
maxoutdim: The output dimension, i.e. dimension of the transformed space (min(d, nc-1))solver: The choice of solver::eig: usesLinearAlgebra.eigen(default):eigs: usesArpack.eigs(always used for sparse data)
tol: Convergence tolerance foreigssolver (default0.0)maxiter: Maximum number of iterations foreigssolver (default300)
References
StatsAPI.predict — Methodpredict(M::MULTISPATI, x::AbstractVecOrMat{<:Real})Transform the observations x with the model M.
Here, x can be either a vector of length d or a matrix where each column is an observation.
MultivariateStats.reconstruct — Methodreconstruct(M::MULTISPATI, y::AbstractVecOrMat{<:Real})Approximately reconstruct the observations y to the original space using the model M.
Here, y can be either a vector of length p or a matrix where each column gives the components for an observation.
Multispati.moransIbounds — FunctionmoransIbounds(M::AbstractMultispati; sparse_approx::Bool=true)Return the bounds and expected value for Moran's I given the model M in the order $I_{min}$, $I_{max}$, $I_0$
Base.size — Methodsize(M)Returns a tuple with the dimensions of input (the dimension of the observation space) and output (the dimension of the principal subspace).
MultivariateStats.projection — Methodprojection(M::AbstractMultispati)Returns the projection matrix (of size (d, p)). Each column of the projection matrix corresponds to a eigenvector. The eigenvectors are arranged in ascending order of the eigenvalues.
LinearAlgebra.eigvecs — Methodeigvecs(M::AbstractMultispati)Get the eigenvectors of the model M.
LinearAlgebra.eigvals — Methodeigvals(M::AbstractMultispati)Get the eigenvalues of the model M.
spatialPCA
Multispati.SpatialPCA — TypeSpatialPCA <: AbstractMultispatiStatsAPI.fit — Methodfit(SpatialPCA, X, W; ...)Perform SpatialPCA over the data given a matrix X and W. Each column of X is an observation. W is a connectivity matrix where $w_{ij}$ is the connection from j -> i.
Keyword arguments
maxoutdim: The output dimension, i.e. dimension of the transformed space (min(d, nc-1))solver: The choice of solver::eig: usesLinearAlgebra.eigen(default):eigs: usesArpack.eigs(always used for sparse data)
tol: Convergence tolerance foreigssolver (default0.0)maxiter: Maximum number of iterations foreigssolver (default300)center_sparse: Center sparse matrixX(dense X will always be centered) (defaultfalse)
References
StatsAPI.predict — Methodpredict(M::SpatialPCA, x::AbstractVecOrMat{<:Real})Transform the observations x with the SpatialPCA model M.
Here, x can be either a vector of length d or a matrix where each column is an observation.
MultivariateStats.reconstruct — Methodreconstruct(M::SpatialPCA, y::AbstractVecOrMat{<:Real})Approximately reconstruct the observations y to the original space using the SpatialPCA model M.
Here, y can be either a vector of length p or a matrix where each column gives the components for an observation.
Multispati.varianceMoransIdecomposition — FunctionvarianceMoransIdecomposition(M::SpatialPCA, X)Decompose the eigenvalues into a variance and Moran's I contribution given the model M and matrix X which was used for fitting the model.
Statistics.mean — Methodmean(M::SpatialPCA)Returns the mean vector (of length d).